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Abstract

Several existing and emerging applications of Space Situational Awareness (SSA) relate directly to spacecraft
Rendezvous, Proximity Operations, and Docking (RPOD) and Formation / Cluster Flight (FCF). Observation corre-
lation of nearby objects, control authority estimation, sensor-track re-acquisition, formation re-configuration feasi-
bility, ‘stuck’ thrusters, and worst-case passive safety analysis are some areas where analytical reachability methods
have potential utility. Existing reachability theory is applied to RPOD and FCF regimes. Necessary conditions for
maximum position reachability are developed, allowing for a reduction in reachable set computation dimensionality.
The nonlinear relative equations of Keplerian motion are introduced and used for all reachable position set determi-
nations. Examples for both circular and eccentric orbits are examined and compared. Weaknesses with the current
implementation are discussed and future numerical improvements and analytical efforts are discussed.

1 Introduction
The concept of reachability is central to Space Situational Awareness (SSA), Rendezvous, Proximity Operations,
and Docking (RPOD), and spacecraft Formation / Cluster Flight (FCF) applications. SSA can be broadly defined as
knowing the location of objects in Earth orbit to specified accuracies as well as operational status, size, shape, and
mission. With additional tracking capabilities coming online and improved sensor accuracy, the Space Object Catalog
(SOC) is expected to grow by an order of magnitude [1]. With this marked increase in available data, analytical
methods to evaluate Uncorrelated Tracks (UCTs) and maneuvering Resident Space Objects (RSOs) can significantly
improve tractability of the SSA problem.

For RPOD and FCF applications, emerging mission concepts such as fractionation [2] drastically increase system
complexity of on-board autonomous fault management systems. Reachability theory, as applied to SSA in RPOD and
FCF applications, can involve correlation of nearby RSO observations, control authority estimation, and sensor track
re-acquisition. Additional uses of reachability analysis are formation reconfiguration, worst-case passive safety, and
propulsion failure modes such as a ‘stuck’ thruster.

When multiple spacecraft are in vicinity of one another with appreciable periods between observations, correlating
new spacecraft tracks to previously known objects becomes a non-trivial problem. A particularly difficult sub-problem
is seen when long breaks in observations are coupled with continuous, low-thrust maneuvers. Existing methods that
are well suited to adaptation to this application involve applying generating functions to determine whether a new
observation is reachable from a previous RSO track [3, 4, 5]. Reachability theory, related to generating functions,
can compute contiguous reachability sets for known or estimated control authority to support such correlation efforts.
Further, minimum required control authority may be estimated by determining optimal control trajectories between
observations. In terms of reachability, this is equivalent to the new spacecraft observation lying on or near an outer-
most surface of a reachability set with an estimated minimum control authority. Lastly, in the event that spacecraft are
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maneuvering within proximity of one another and sensor-track is lost, reachability analysis can predict the boundaries
of the reachable space which must be searched for sensor re-acquisition.

With several spacecraft operating in a formation, a formation reconfiguration maneuver, particularly a fast and/or
autonomous one, can be very complex. Reachability analysis can provide insight as to how a given formation geometry
can reconfigure into any other geometry given time and thrust constraints. In the event of a spacecraft failure in
a proximity operations scenario, it is desirable that spacecraft relative trajectories attenuate chance of a spacecraft
collision. A maximal reachability set can be computed using worst-case unmodeled perturbations as an antagonistic
control input to construct conservative passively safe relative trajectories or to make informed decisions regarding
evasive maneuvers. One failure mode in RPOD scenarios that can prove particularly hazardous is that of a ‘stuck’
thruster. Such a thruster may have a solenoid valve ‘stuck’ in a permanent ‘open’ position, causing a continual thrust
that may not be terminated. An applied reachability analysis of such a system can show the absolute maximum (or
‘worst-case’) state change that may result from such a failure over a fixed time. Such information can be applied to
RPOD mission planning to minimize negative outcomes such as spacecraft collision.

Reachability theory has been extensively discussed in controls literature for both continuous and hybrid systems
and is directly derived from optimal control theory [6, 7, 8, 9]. Polytopic reachability sets, which have straightforward
parameterization and computation, have been shown to provide accurate conservative outer bounds for linear and
norm-bounded nonlinear systems [10]. Through combining both ellipsoidal outter bounds as well as ellipsoidal inner
bounds, exact reachability sets can be computed for convex reachability sets [11]. Reachability theory has also been
successfully applied to differential games, specifically it has been applied to aircraft mid-air collision avoidance where
one aircraft is avoiding another [12].

Applied specifically to RPOD, un-actuated reachability is relevant to the concept of Passive Safety (PS), defined
as relative on-orbit trajectories that “guarantee collision avoidance with no thrusting required ... in the presence of a
class of anomlous system behaviors” [13]. Currently, treatment of PS has been limited to ensuring that such drifting
spacecraft do not deterministically [14, 15, 13] or statistically [16] collide with nearby spacecraft. These methods have
similarities to existing reachability, where the spacecraft is essentially drifting and the possible states of the spacecraft
are determined by the set of initial states and worst-case disturbances.

This paper reviews recent advances in reachability theory, applying them to the nonlinear relative orbit equations
of motion, which are appropriate both for general SSA and spacecraft proximity operations applications. Lastly,
reachability sets for several example scenarios are used to illustrate the behavior of systems with varying levels of
control authority representative of existing operational spacecraft and propulsion technologies.

2 Applied Reachability Theory
Traditionaly, numerical solutions to Hamilton-Jacobi (HJ) PDE formulations are used to generate reachability sets for
arbitrary nonlinear systems [17, 18]. Recent work suggests that significant computation reduction may be realized by
individually solving for trajectories whose final states represent a sampling of the final reachability surface [19]. The
results from this later work [19] are re-stated here, then used to generate some examples suitable for SSA applications.
Given a nonlinear a differential system ẋ = f(x,u, t), with x ∈ Rn, u ∈ Rm, and t ∈ [t0, tf ], the state x and co-state
p equations of motion are

ẋ = f(x,u∗, t) (1)

ṗ = −

(
∂f
∂x

T
)

p (2)

where the optimal control policy u∗ at any time t > t0 is found to be

u∗ = um

∂f
∂u
Tp

‖ ∂f
∂u
Tp‖2

(3)

for any u in a norm-bounded set U (where um is the magnitude of the norm-bounding). The initial state x0 = x(t0) is
constrained to be within an ellopsoid, which is consistent with state knowledge obtained from probability distribution
functions generated by operational orbit estimation algorithms [cite].



Definition 2.1 Ellipsoidal Reachability Problem Statement (ERPS)
A problem is an ERPS when there exists an initial reachability boundary condition ellipsoid V (x0, t0) = xT0 Ex0−1 ≤
0, E ∈ Sn×n+ , dynamics ẋ = f(x,u, t), and admissible control set u ∈ U , where U is defined as

U = {u | uTu ≤ u2
m} (4)

where um ∈ R, um > 0. This definition of the admissible control set U is assumed for the remainder of this paper.

Since this treatment considers ERPSs, the initial set of reachable states at time t0 is defined as any x0 that satisfies

xT0 Ex0 − 1 ≤ 0 (5)

It is also assumed that the system in question satisfies the assumptions specified in definition 2.2.

Definition 2.2 Class of Nonlinear Systems: Restricted Nonlinear Systems
If a nonlinear systems under consideration has an optimal control u∗ that lies on the boundary of the feasible control
set U and pT

[
∂2f/∂u2

]
≥ 0, it is called a Restricted Nonlinear System (RNS).

This assumption does not restrict the scope of these results in the context of SSA, as in orbital scenarios control
and disturbances typically act on the objects as accelerations, producing a linear control (and hence,

[
∂2f/∂u2

]
= 0

and pT
[
∂2f/∂u2

]
≥ 0. To simplify notation and to emphasize the need to solve both x and p simultaneously, the state

and adjoint dynamics are now concatenated into a larger state z such that

z =
[

x
p

]
From which it follows that

ż =
[

ẋ
ṗ

]
= fz(x,p, t)

and

z(t) = φz(t; x0,p0, t0) =
∫ t

t0

fz(x(τ),p(τ), τ)dτ

with the initial conditions x(τ = t0) = x0 and p(τ = t0) = p0. It is also convenient to form the state and adjoint
dynamic equations such that the velocity and position states can be written as:

xT =
[

dT vT
]T

pT =
[

pTd pTv
]T

With these definitions and assumptions complete, the maximum position reachability results are now introduced.

Given an ERPS with RNS dynamics, where u is in the norm-bounded set U , the absolute maximum position df at
time tf as well as the corresponding initial conditions xT0 = [dT0 vT0 ] satisfying (5) are found by solving the following
system of equations [19]:  df

df
0

 = Mφz(tf ; x0,−2λEx0, t0) (6)

[
d0

v0

]T
E
[

d0

v0

]
− 1 = 0 (7)



for d0, v0, df , and λ, where

M =

 I 0 0 0
0 0 I 0
0 0 0 I


3
2n×2n

and λ is the Lagrange multiplier associated with the initial condition constraint (7). Similarly, if an a-priori direction
is specified, then given an ERPS with RNS dynamics, where u is in the norm-bounded set U , and an initial position
direction d̂0 is specified, the absolute maximum reachable position df at time tf as well as the corresponding initial
direction magnitude d and velocity v0 satisfying (5) are found by solving the following equations: df

df
0

 = Mφz(tf ;
[
dd̂0

v0

]
,−2λE

[
dd̂0

v0

]
, t0) (8)

[
dd̂0

v0

]T
E
[
dd̂0

v0

]
− 1 = 0 (9)

for d, v0, df , and λ.

Thus, solving equations (6) and (7) for ζ = [d0, v0,df , λ] provides the maximum possible final position df start-
ing from within the initial ellipsoid described by xT0 Ex0 − 1 = 0. This result can be used as a necessary condition for
reachability - given some position observation d̃f of an RSO at time tf , if um is known then the observed position of
the RSO must satisfy the following inequality:

d̃
T

f d̃f ≤ dTf df (10)

This provides a straightforward, low-computation method of determining whether an observed RSO may possibly
be a previously observed object. Similarly, if the new observation satisfies (10), then the exact reach set may be
computed by discretizing the initial surface into kn/2−1 initial directions d̂0 and solving equations (8) and (9) for
ζd = [d, v0,df , λ].

2.1 Exact Nonlinear Relative Equations of Orbital Motion
Given an arbitrary reference orbit solution xr(t), the reference radius (Rr), radius time derivative (Ṙr), and true
anomaly rate (ḟr) can be directly computed. In this case, the relative equations of motion can be written in the form
ẋ = f(x, t) + Bu [20]:

ẋ =


ṙ
ṡ
ẇ
r̈
s̈
ẅ

 =



ṙ
ṡ
ẇ

2ḟr
(
ṡ− s Ṙr

Rr

)
+ rḟ2

r + µ
R2

r
− µ

R3 (Rr + r)

−2ḟr
(
ṙ − r Ṙr

Rr

)
+ sḟ2

r −
µ
R3 s

− µ
R3w


+


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


 ur
us
uw

 (11)

and the inertial radius of the spacecraft is R, defined as

R =
√

(Rr + r)2 + s2 + w2

∂f/∂x can now be computed. The partial with respect to the control input, ∂f/∂u, is simply

∂f
∂u

= B =
[

03×3

I3×3

]
(12)



This provides the optimal control law u∗ that is standard for systems with linear control:

u∗ = um
BTp
‖BTp‖

(13)

The above results are now applied to specific examples.

3 Example Formulation
To illustrate the SSA applications of the results shown in this paper, 2-Degree-Of-Freedom (DOF) nonlinear relative
motion dynamics (11) are formed into two examples. Because the cross-track (w) motion is only weakly coupled with
the radial and along-track motion, the 2-DOF dynamics chosen for examination are those of radial (r) and along-track
(s) motion.

3.1 Example 1: Spacecraft with Hall Thruster Propulsion System in LEO
This example illustrates the control authority of a LEO spacecraft equipped a Hall thruster propulsion system capable
of providing 0.01N of thrust. Figs. 2(a) through 2(d) show the reachability surface at tf = P/4, P/2, 3P/4, and P
(for example 1, P = 5556s).

Fig. 2(d) demonstrates the weakness of the control authority as well, as the final position reachability surface has
already become significantly distorted by the dynamics at LEO. To provide a basis for comparison, Fig. 1 plots all four
reachability surfaces with one another to provide additional perspective and insight into the growth of the reachability
surface.

Figure 1: Example 1 Reachability for Select Time Intervals in a Rotating Hill Frame



(a) tf = P
4

(b) tf = P
2

(c) tf = 3P
4

(d) tf = P

Figure 2: Computed reachability sets for tf = P/4, P/2, 3P/4, and P . Note that later reachability sets (Fig. 2(c) and
Fig. 2(d) are non-convex.



3.2 Example 2: Spacecraft with Hall Thruster Propulsion in LEO to GEO Transfer Orbit
This example illustrates the control authority of a spacecraft equipped with a Hall thruster propulsion system capable
of providing 0.01N of thrust immediately after a burn injecting it into a LEO to GEO transfer orbit (400km altitude
to 35,786km). Fig. 3 shows the reachability surface at tf = 1389s (equivalent to the half-orbit reachability plot from
Example 1 shown in Fig. 2(b)).

Despite having the save level of control authority as Example 1, Example 2 resides in a transfer trajectory, and
thus it’s relative control authority increases as the orbit altitude increases. As a result, the position reachability surface
at t = 1389s in Fig. 3 is more ‘spherical’ than the reachability set for Example 1 shown in Fig. 2(b). For an easier
comparison, the two are plotted together without individual trajectories in Fig. 4. For reference, Fig. 5 shows the
reference orbit parameters, R

Figure 3: Example 2, tf = 1389s



Figure 4: Comparison of reachability sets for Example 1 and Example 2 at tf = 1389s.

Figure 5: LEO to GEO reference orbit parameters Rr, Ṙr, and ḟr



3.3 Summary of Results
Each example provides an illustration of what maximum position reachability surfaces look like at various time inter-
vals. Unfortunately, because the integration method used requires the initial reachability set to be discretized, after a
period of time the discretization resolution becomes insufficient, requiring certain initial directions to be discretized
at different densities than other regions. Both significant compression and separation of the discretized trajectories
occurs, causing the propagated surface to become coarse and angular in localized regions. This issue can be solved
either by further increasing the discretization resolution or solving the original HJ PDE numerically [21].

Another problem encountered during the generation of the results was the appropriate selection of an initial guess
for d, v0, df , and λ. The current implementation uses the linear system to generate an initial guess, however this
approach breaks down for larger time intervals and particularly eccentric orbits.

4 Conclusions
Existing reachability theory is particularly applicable to SSA and safety in both RPOD and FCF operations. Obser-
vation correlation, control authority characterization, target reacquisition, formation reconfiguration, ‘stuck’ thrusters,
and worst-case passive safety may all be handled using analytical or numerical methods for reachability. Results
from recent reachability advances were summarized and applied to a large class of nonlinear systems. The nonlinear
equations of relative orbital motion are introduced in a rotating Hill frame for applications in proximity operations
safety and SSA. For illustrative purposes, the Clohessy-Wiltshire (CW) equations are time- and distance-normalized
to provide a basis for comparison of different scenarios at varying orbit altitudes, central bodies, and relative control
authorities. The optimal control is examined in detail to provide insight into control direction ‘switching.’ Neces-
sary and sufficient conditions for switching are developed and the implications of switching in various directions are
examined. CW-coordinate normalization is leveraged to demonstrate control authority equivalence between example
scenarios in both low Earth orbit and geostationary orbit. In each of the examples, the directional reachability equa-
tions are successfully solved for multiple initial directions and time intervals. Future work includes computing the
reachability sets for a 3-DOF system, applying the theoretical results in this paper to a larger variety of SSA scenarios,
exploring initial set discretization methods to more evenly populate points on the final reachability set, and identifying
improved methods to generate initial guesses.
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